Subproject B5 Single Crystalline Laser Welding


Motivation and objectives

Schematic representation of the laser metal deposition process on directionally solidified material

Rising demands on engines in the aerospace industry require high engine inlet temperatures in modern gas turbines in order to increase the efficiency. Single-crystal nickel-based Superalloys were developed in order to meet these rising demands and confer high pressure turbine blades with the necessary wear resistance at high temperatures. The blades of the high pressure turbine are subject to significant wear due to the high mechanical strain under extreme conditions, which appears in the form of cracks in the single-crystal substrate material. There are no approaches for the restoration of the original material properties since the repair of cracks and erosions by polycrystalline laser cladding can be applied only to a limited extent. The aim of the sub-project is the restoration of defect, single-crystal high pressure turbine blades.

Results

In the first funding period different possibilities of repair were evaluated with the aim of widening the scope of existing repair areas. The regeneration of defects parallel to the primary dendrite orientation were studied with the hypothesis that after the formation of cracks, the single-crystal substrate materials can be restored by means of laser metal deposition that maintains a particular temperature gradient. The generated knowledge was used in the second funding period to enable the development of a method for the successful extension of directional solidification of the deposited material in defects perpendicular to the primary dendrite orientation.

Repair strategies for the repair of high pressure turbine blades

Current research and outlook

For the current funding period, the constructed hypothesis is that the required single-crystal structure of the deposited material can only be restored, but also influenced specifically in a further step. By developing appropriate heat treatment methods of the regenerated material and an adaptation of the regeneration process, it is possible to influence the microstructure with regard to its thermomechanical properties with the aim of adjusting these properties to match those of the substrate material. The adaptation of the process involves the integration of results from other sub-projects with the aim of optimizing the regeneration sequence within and between the process cells.


Subproject leader

Dr.-Ing. Stefan Kaierle
Address
Laser Zentrum Hannover
Hollerithallee 8
30419 Hannover
Dr.-Ing. Stefan Kaierle
Address
Laser Zentrum Hannover
Hollerithallee 8
30419 Hannover
Prof. Dr.-Ing. Volker Wesling
Address
Laser Zentrum Hannover
Hollerithallee 8
30419 Hannover
Prof. Dr.-Ing. Volker Wesling
Address
Laser Zentrum Hannover
Hollerithallee 8
30419 Hannover

Staff

Robert Bernhard
Address
Laser Zentrum Hannover
Hollerithallee 8
30419 Hannover
Robert Bernhard
Address
Laser Zentrum Hannover
Hollerithallee 8
30419 Hannover

Publications

International Scientific Journal Paper, peer-reviewed

  • Kaierle, S.; Overmeyer, L.; Alfred, I.; Rottwinkel, B.; Hermsdorf, J.; Wesling, V.; Weidlich, N. (2017): Single-crystal turbine blade repair by laser cladding and remeltingCIRP Journal of Manufacturing Science and Technology 2017 (19), 196--199
    DOI: 10.1016/j.cirpj.2017.04.001
  • Nicolaus, M.; Rottwinkel, B.; Alfred, I.; Möhwald, K.; Nölke, C.; Kaierle, S.; Maier, H.J.; Wesling, V. (2017): Future regeneration processes for high-pressure turbine bladesCEAS Aeronautical Journal 2017 (online)
    DOI: 10.1007/s13272-017-0277-9
  • Rottwinkel, B.; Kaierle, S.; Wesling, V. (2017): Laser cladding for cracked CMSX-4 single-crystalline turbine partsLasers in Manufacturing and Materials Processing 4 (1), 13-23
    DOI: 10.1007/s40516-016-0033-8
  • Böß, V.; Denkena, B.; Wesling, V.; Kaierle, S.; Rust, F.; Nespor, D.; Rottwinkel, B. (2016): Repairing parts from nickel base material alloy by laser cladding and ball end millingIn: Prod. Eng. Res. Devel. 10 (4-5), S. 433–441
    DOI: 10.1007/s11740-016-0690-7

International Conference Paper, peer-reviewed

  • Weingaertner, W.; Schweitzer, L.; Rottwinkel, B.; Noelke, C.; Kaierle, S.; Wesling, V. (2015): Single-Crystal (SX) Laser Cladding of CMSX48th Brazilian Congress of Manufacturing Engineering (COBEF). Brazilian Society of Engineering and Mechanical Sciences. Salvador / Brazil, 22.05.2015
  • Rottwinkel, B.; Nölke, C.; Kaierle, S.; Wesling, V. (2014): Crack Repair of Single Crystal Turbine Blades Using Laser Cladding TechnologyProcedia CIRP 22, S. 263–267
    DOI: 10.1016/j.procir.2014.06.151
  • Rottwinkel, B.; Schweitzer, L.; Nölke, C.; Kaierle, S.; Wesling, V. (2014): Challenges for Single-Crystal (SX) Crack CladdingPhysics Procedia 56, S. 301–308
    DOI: 10.1016/j.phpro.2014.08.175

International Conference Paper, not peer-reviewed

  • Kaierle, S.; Rottwinkel, B. (2016): Development of new laser technologies for repairing single crystal turbine bladesInt. Laser- und Fügesymposium. Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS. Dresden, 01.01.2016
  • Nicolaus, M.; Rottwinkel, B.; Möhwald, K.; Nölke, C.; Kaierle, S.; Maier, H. J.; Wesling, V. (2015): Future regeneration processes for high pressure turbine blades64. Deutscher Luft- und Raumfahrtkongress 2015, 22-24 September 2015. Deutsche Gesellschaft für Luft- und Raumfahrt - Lilienthal-Oberth e.V.®. Rostock, 24.09.2015
  • Rottwinkel, B.; Nölke, C.; Hustedt, M.; Kaierle, S.; Wesling, V. (2013): Single Crystal Crack Cladding of CMSX-424th Advanced Aerospace Materials and Processes (AeroMat) Conference and Exposition. American Society for Metals. Bellevue / USA, 03.05.2013
  • Rottwinkel, B.; Nölke, C.; Hustedt, M.; Kaierle, S.; Wesling, V.; Weidlich, N. (2012): Single Crystal (SX) Laser Cladding of CMSX-4Icaleo 2012. LIA - Laser Institute of America. Anaheim / USA, 28.09.2012

National Scientific Journal Paper, peer-reviewed

  • Denkena, B.; Flöter, F.; Nespor, D.; Wesling, V.; Kaierle, S.; Hustedt, M.; Rottwinkel, B. (2013): Bauteilregeneration bei einkristalliner GefügestrukturWerkstattstechnik online 103 (6), S. 476–480
All publications of the Collaborative Research Centre